
S T R U C T U R E  OF H E A T  C O N D U C T I O N  

A .  G .  S h a s h k o v  a n d  T .  N .  A b r a m e n k o  UDC 536.24.01 

A new s t ruc tu ra l  approach  is proposed for analyzing and synthes iz ing  h e a t - t r a n s f e r  phenomena .  
The method is i l lus t ra ted  with examples  of one-d imens iona l  hea t  conduction.  

The s t ruc tu re  of heat  t r a n s f e r  should r e f l ec t  the in te r re la t ionsh ips  and mutual  effects  of the spat ia l  -- 
t e m p o r a l  fo rmat ion  of the t e m p e r a t u r e  field and the heat  fluxes at the boundary  of the object  and within it. 
To a ce r ta in  extent ,  but not a lways in an explici t  fo rm,  these  functions a r e  p e r f o r m e d  by the different ial  
equations of t h e r m a l  conductivity with the boundary  conditions and the i r  solut ions,  which can be used to 
ca lcula te  s t e ady - s t a t e  and t rans ien t ,  local and ave rage  t e m p e r a t u r e s  and heat  f luxes .  However ,  these r e -  
sul ts  cannot be cons idered  the u l t imate  goal of a study of heat  c o n d u e t i o ~  They do not p e r m i t  a detailed 
ana lys i s  of the in te r re la t ionsh ip  between heat  t r a n s f e r  at the boundary of the object  and within it, and they 
a r e  of l i t t le use  in the solution of engineer ing  p rob l ems  of such cu r r en t  i n t e r e s t  as  the co r r ec t i on  and 
syn thes i s  of heat  s y s t e m s  with p respee i f i ed  p r o c e s s e s  for shaping the t e m p e r a t u r e  f ie lds .  

In pa r t i cu l a r ,  this  inef fec t iveness  of a d i rec t  use  of the solutions of the d i f ferent ia l  equations of heat  
conduction for  ana lys i s  and synthes is  can be a t t r ibuted to the c i r cums tance  that they a r e  e x p r e s s e d  in t e r m s  
of compl ica ted  combinat ions  and de r iva t ives ,  in tegra ls ,  and t e r m s  containing none l emen ta ry  funct ions.  
The complex i ty  of these  equations m a s k s  the physica l  meaning  of the individual t e r m s  and the i r  r e l a t i o n -  
sh ips .  

To some extent these  shor t comings  a r e  avoided by us ing  the s t ruc tu ra l  method re la ted  to an ana lys i s  
of the s t ruc tu ra l  d i ag ram const ruc ted  on the bas i s  of the L a p l a c e - t r a n s f o r m e d  dif ferent ia l  or in tegral  hea t -  
conduction equation with the a p p r o p r i a t e  boundary condi t ions.*  

a~|x,t}_ ,, O*~{x,$I 
--~---- - 0~, 

qIx, pl=-x ~ ~(x,p) 

Fig .  1. S t ruc ture  of the genera l  solution of the one-  
d imensional  heat -conduct ion p r o b l e m .  

*As a r e su l t ,  the equations conver t  into s imp le r  equations,  and f requent ly  the r e s u l t s  a r e  pure ly  a lgeb ra i c .  
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I . 

Fig.  2. S t ruc tura l  d iagram for  heat  t r a n s f e r  in a rod .  a) T r a n s -  
f e r  descr ibed  by  the heat-conduct ion equation; b) by a hyperbol ic  
equation; c) by an integrodLfferenttal  equation.  

The s t ruc tu ra l  d i ag ram is composed in such a manner  tha t  it y ie lds ,  in accordance  with es tabl i shed 
ru l e s ,  the product  of the t r a n s f o r m s  of functions desc r ib ing  the individual uni ts ,  i . e . ,  the t r ans f e r  func-  
t ious of the individual units ,  groups of such uni ts ,  and the ent i re  sys t em [1]. 

The Bore l  theorem can be used to find the inverse  t r a n s f o r m  of a product  of t r a n s f o r m s  f rom the in-  
v e r s e  t r a n s f o r m s  of the cofae tors ;  i . e . ,  this  theorem makes  it poss ib le  to conver t  to the t imel ike  reg ion .  

The opera to r  functions descr ib ing  the  units mus t  be as s imple  and physica l ly  meaningful  as  poss ib le .  
Accordingly,  in the construct ion of the s t ruc tu ra l  d iagram,  those units  whose "output" cons is t s  of the t e m -  
p e r a t u r e s  and heat  f luxes at  the boundary of the media should be dis t inguished.  

The s t ruc tu ra l  d iagram composed in this manner  r e f l ec t s  the mutual  ef fec ts  (coupling) of the f o r m a -  
tion of the boundary conditions and the t e m p e r a t u r e  f ields and the heat  f luxes in the object .  On the whole, 
this d iagram compact ly  codes and c o r r e c t l y  desc r ibes  the functional re la t ionship  between the "input" and 
the "output ."  

On the ba s i s  of this s t ruc tu ra l  d i ag ram it is poss ib le  to immedLately wr i t e  out the equation for  a 
unit or for  a group of unLts. In p rac t i ce  this is a ve ry  impor tan t  capabil i ty,  since it p e rmi t s  us  to es tab l i sh  
the re la t ionship  between the coeff icients  and the va r i ab l e s  of the equat ions.  

The s t ruc tu ra l  approach is apparent ly  the m o s t  effect ive genera l  method for  studying (analyzing and 
synthesizing) complicated in te r re la ted  s y s t e m s  containing e lements  of different  physica l  na tu res ,  in p a r -  
t icular ,  e l ec t r i ca l  and the rma l  e l emen t s .  In this sense  the s t ruc tu ra l  approach  is a methodological  brLdge 
connecting the studies of e l ec t r i ca l  and t he rma l  p r o c e s s e s  in e l e c t r i c a l - - t h e r m a l  s y s t e m s .  * 

One pa r t i cu la r  applicat ion of s t ruc tu ra l  ana lys i s ;  but of p rac t i ca l  impor tance ,  could be in the develop-  
ment  of t rans ien t  methods for  t he rm a l  m e a s u r e m e n t s .  The s t ruc tu ra l  d i ag ram,  as  a l inear  model  of the 
physica l  p r o c e s s  (system),  can offer a convenient descr ip t ion and ana lys i s  of the in te r re la ted  t r a n s f e r  
p r o c e s s e s  ( e .g . ,  t he rma l  conductivity and thermodiffusion) .  

* For  example ,  in a t he rm a l  a n e m o m e t e r  the sensi t ive  e lement  -- a heated f i l ament  at which heat  is evolved,  
t r a n s f e r r e d  within the f i lament ,  and diss ipated in the surrounding medium --  is the e l emen t  of a compl i ca -  
ted e lec t ron ic  c i rcui t .  For  this r e a s on  the bas ic  c h a r a c t e r i s t i c s  of the a n e m o m e t e r  (its sens i t iv i ty  and 
stat ic  and dynamic e r r o r s )  a re  governed not so much by the p rope r t i e s  of the sensi t ive  e lement  as  by the 
s t ruc tu re  o[ the m e a s u r e m e n t  c i rcu i t  as  a whole.  
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I t  is not the purpose  of a study of the s t ruc tu re  of a p r o c e s s  or  phenomenon to develop a new physical  
theory  or pr inciple  but to compare  theor ies  and pr inc ip les ,  i . e . ,  to de t e rmine  their  r e la t ionsh ips ,  and 
the reby  genera l ize  r e s u l t s .  

The f o r m a l  concepts  of the "input" and "output" of the s t ruc tu ra l  d i a g r a m  a re  a s soc ia t ed  with the 
fundamental  concepts  of "cause"  and "e f f ec t , "  and to avoid confusion we take up these  ques t ions .  

A t rans ien t  heat  t r a n s f e r  r e s u l t s  f rom a disrupt ion of the s teady t h e r m a l  s tate  of a s y s t e m .  In this 
sense  the cause of the t r ans ien t  heat  t r a n s f e r  could be any changes in the boundary  and initial condit ions.  

The subject  of a study of t r ans i en t  heat  conduction, descr ibed  by the F o u r i e r  law, cons is t s  of the 
synchronized changes  and in te r re la t ionsh ips  between the t e m p e r a t u r e s  and heat  f luxes due to a disrupt ion 
of the equi l ibr ium t h e r m a l  s tate  of the object .  This disrupt ion is t r ea ted  as  the cause  of the t r ans ien t  
na ture  of the s i tuat ion.  The t e m p e r a t u r e  grad ien t  within the object  can be t r ea ted  a s  both a cause  and an 
effect  of the heat  t r a n s f e r  (heat fluxes within the object) .  Within the f r a m e w o r k  of the s t ruc tu ra l  d iagram 
this c i r c u m s t a n c e  is r e f l ec ted  by the c i r c u m s t a n c e  that  the s t ruc tu ra l  d i a g r a m  is [nvar tant  with r e s p e c t  
to the "input" and the "output ."  This  invar iance  is a consequence of t he  F o u r i e r  hypothes is  (law) q =- -  
- X g r a d T ,  which ag ree s  well  with obse rva t ions  when the spat ia l  - -  t empora l  s c a l e s  of the heat-conduct ion 
phenomenon a re  quite l a r g e .  

For  the case  in which the r a t e  a t  which t h e r m a l  energy  is supplied is v e r y  l a rge ,  or for  a t r ans i en t  
p r o c e s s  cons idered  over  a shor t  t ime  in te rva l ,  Morse  and Feshbach [2] have  proposed  the following h y p e r -  
bol ic  equation for  calcula t ing the heat  conduction: 

1 02T -I- I OT = v T "  
-c~2 Ot 2 a Ot 

This equation can be der ived  by wri t ing  the law of heat  t r an s f e r  by conduction in the fo rm 

- r + ~  
Ot ' 

where  

% = a/c~. 

Below we examine  the s t ruc tu re  of the heat  t r a n s f e r  descr ibed  by a hyperbol ic  equat ion.  

Ma te r i a l s  displaying t h e r m a l  " m e m o r y "  or " inher i tance"  a r e  a topic of much cu r r en t  in te res t  [3, 4]. 
In such m a t e r i a l s  the "h i s to ry"  of a p r o c e s s  which is occur r ing  signif icantly influences hea t  conduction 
at  the t ime  under  cons idera t ion .  

To study the s t ruc tu re  of heat  t r a n s f e r  for the example  of the one-d imens iona l  heat -conduct ion p r o b -  
l em we use  the equation 

aT(x, t) ' ~ ' ( s )  OT(x, t - - s )  d s =  k(O) O'T(x, l) + f k,(s) O~'T(x" l - - s )  ds, 
(0} 

0 0 

where  ~ '  (s) and k '  (s), the ke rne l s  of the integral  o p e r a t o r s ,  a r e  re la ted  to the re laxa t ion  fnnctions ~(s) and 
k '  (s) by 

d ~(s), k ' ( s ) =  d k(s): 

in the l imi t  s ~ 

~' (s)-~ 0, k' (s) ~ 0. 

The re laxa t ion  functions can be approx imated  by var ious  e x p r e s s i o n s ,  whose final fo rm,  with the 
n u m e r i c a l  constants ,  can be de te rmined  only expe r imen ta l ly .  

STRUCTURE OF ONE-DIMENSIONAL HEAT CONDUCTION 

We will first determine the structure of heat transfer for relatively simple examples and then go 
on to more complicated examples. We consider a very simple example: the heat conduction of a thermally 
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insuIated,  semi- inf in i te  rod into one end of which there  is  a heat  f lux. We show how to de t e rmine  the s t r u c -  
ture  of heat  t r a n s f e r  for  the ord inary  heat-conduct ion law q = - X ~ T / O x ,  for  the modified law q = --  X (3t/dx) - -  
(a/cq 2) - -  (aq/Ot), and for  the case  in which m e m o r y  ef fec ts  a r e  taken into account .  We then make  a c o m -  
pa ra t ive  s t ruc tu ra l  ana lys i s .  

I .  Le t  us  de te rmine  the s t ruc tu re  of heat  t r an s f e r  in a semi- inf in i te  rod whose l a t e ra l  sur face  is 
the rmal ly  insulated and into one end of which there  is a heat  flux which v a r i e s  with the t ime .  We do not 
take up the cause of the change in the heat  flux a t  this point.  At this point the only impor tan t  considera t ion  
is that the heat  flux v a r i e s  with the t ime .  We denote the rod t e m p e r a t u r e  by T(x, t), and we denote the t e m -  
pe ra tu re  of the surrounding medium by 0 .  The p rob l em is solved by Laplace  t r a n s f o r m s .  The p rob lem is 
fo rmula ted  analyt ica l ly  as  follows: 

O~ (x, t) 0~o (x, t) 
= a  - ,  O(x, 0 ) = 0 ,  ~(oo, t ) = O ,  

Ot Ox" 

oo(x, t) [ = q(t): 
ax ]x_-O 

where ~(x, t )=T(x ,  t) - -O ,  0 =cons t .  

We denote the Laplace  t r a n s f o r m  of O(x, t) by 

L {0 (x, t)} = ~ ~t (x, t) e -pt dt = ~  (x, p). 
0 

We wri te  the genera l  solution of the equation as  

x z _ 

The genera l  solution of the equation for  the Laplace  t r a n s f o r m  of the t e m p e r a t u r e  $(x, p) is descr ibed  by 
the s t ruc tu ra l  d i ag ram in Fig .  1. The solution is s imple  in fo rm ,  so that  the s t ruc tu ra l  d i ag ram r e p r e -  
senting this solution c a r r i e s  a l m o s t  no new information about the s t ruc tu re  of heat  t r a n s f e r  in the rod .  
However ,  this  d iagram does emphas ize  that the a r b i t r a r y  constants  C1 and C a a r e  inputs or agents  and 
mus t  be specified,  i . e . ,  de te rmined  f rom the boundary condit ions.  

I t  can be shown that  we have C 1 =0 and C 2 =9(0, p)/b~p,  where  b =X/g:a. 

A solution of the equation sat is fying the boundary conditions is 

1 ~Ta:J" p 

Since 

9(0, p) ~- q'(p) I 

o V Y  

then 

(x, p) : ~ ( 0 ,  p) e 

The flux at c ro s s  section x, q(x, p), is given by 

x 

Ox -- 

On the bas i s  of the equations for  g(x, p) and q(x, p) we can cons t ruc t  a s t ruc tu ra l  d iagram (Fig. 2a) 
which displays  the s t ruc tu re  of the heat  t r a n s f e r .  

The s t ruc tu ra l  d iagram is shown as two para l le l  c i rcu i t s ,  one consis t ing of two units and the other 
of a single unit .  The d iag ram has a single input and two outputs, ~(x, p) and q(x, p).  

We note that the order  in which the units a r e  connected could be changed, and the d i rec t ions  in which 
the units  affect  each other could a lso  be changed. If  these changes a r e  made ,  of course ,  the t r a n s f e r  func-  
tions of the units should be rep laced  by the i r  i n v e r s e s .  This is poss ib le  because  of the synchronous nature  
of the fo rmat ion  of the t e m p e r a t u r e  f ie lds  and heat  f luxes,  which is a consequence of the Four i e r  law which 
we have adopted.  
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Examin ing  the s t ruc tu ra l  d i ag ram in Fig .  2, we find that it can be used to solve s eve ra l  d i r ec t  and 
inverse  p r o b l e m s  of p rac t i ca l  i n t e re s t  {e .g . ,  it can be used to develop methods  for  de te rmin ing  the rma l  
p r o p e r t i e s  of m a t e r i a l s ) .  

A.  If  some t ime dependence q(t) of the heat  flux is specif ied,  the t e m p e r a t u r e  field of the rod  can 
be found. 

B.  The t ime  dependence q(t) providing a des i red  change of the rod t e m p e r a t u r e ,  in pa r t i cu l a r ,  of 
the t e m p e r a t u r e  at the end of the rod,  can be found. 

C.  The the rma l  p r o p e r t i e s  of the rod  can be found f rom the t e m p e r a t u r e  field,  i tself  de te rmined  
e x p e r i m e n t a l l y .  

To find ~I(P) we should speci fy  the method by which the heat  is supplied to the end of the rod (conduc- 
tiou, convection,  or radiat ion) and then fo rmula te  the analyt ic  dependence of the heat  flux on the t e m p e r a -  
ture  on the end of the rod ,  taking into account  the h e a t - t r a n s f e r  m e c h a n i s m  at  the su r f ace .  

I I .  Le t  us  de te rmine  the s t ruc tu re  of heat  t r a n s f e r  in a semi- inf in i te  rod,  whose l a t e ra l  sur face  is 
t he rma l ly  insulated and a t  whose end a t i m e - v a r y i n g  hea t  flux is  appl ied .  In con t ras t  with the preceding  
case  we a s s u m e  that the heat  conduction in the rod is desc r ibed  by a hyperbol ic  equation.  

The ma thema t i ca l  formula t ion  of this p rob lem is 

1 O*'~ 1 0~ O=(f 
W r , 
G Of" a Ot Ox = 

e(x, 0 ) = 0 ,  ao(x, 0 )  = 0 ,  e(oo, t) = 0 ,  
Ot 

- - L  O,~(x, t) 1 . a Oq(x, t) = 
Ox ~=o c~ Ot .=0 q(0, t), q(0, 0 ) = 0 .  

The solution for  the t r a n s f o r m  of the t e m p e r a t u r e  is  

1 ~ p -~ 1 e r r (x, p) = q(,O, p) ~ c; 

Setting x = 0, we find 

We then find 

We solve the equation 

l l / L - p + 1  
(o, p) = ~(o, p) ~ ~; 

~(x, p ) = - ~  ~ (x, p) a p~(x, p) 
ox c~ 

for  

q(x, p ) = - - ~  O~(x, p) 1 =-q(0, p)e r162 
ax a 

Using the e x p r e s s i o n s  for  O(x, p) and q(x, p) we can cons t ruc t  the s t ruc tu ra l  d i ag ram (Fig. 2b). C o m -  
par i son  of the s t ruc tu ra l  d i a g r a m s  in Fig .  2a and Fig .  2b shows tha t in  the ease  of a finite hea t -p ropaga t ion  
veloci ty  a new unit a p p e a r s  in the d i ag ram,  descr ibed  by the opera to r  : a / c ~ ( p +  1, iwhieh takes  into account  
the ef fec t  of the finite hea t -p ropaga t ion  veloci ty  ola the shaping of the t e m p e r a t u r e  field in the rod .  The 
opera to r_cor respond ing  to the propagat ion of the t e m p e r a t u r e  (heat flux) in the rod contains the additional 

2 e fac tor  ~a/Cq(p + 1) in the a rgum en t  of an exponential  function; the o p e r a t o r s  c o r r  spondtng to the units of 
the s t ruc tu ra l  d i ag ram contain the constant  quant i t ies  a ,  b, and Cq, which desc r ibe  the heat  conduction in 
the med ium.  Accord ing ly ,  the s t ruc tu ra l  d i ag r am can be used to point out ways  to de te rmine  these con-  
s tants ,  including the hea t -p ropaga t ion  ve loc i ty .  Let  us  consider  a few of these  ways .  
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The coeff icients  a and b a re  known. The behavior  of the heat  flux, q(0, t), is de te rmined  by the ex -  
pe r imenta l  p r o g r a m .  Accordingly,  the t r a n s f o r m  of the heat  flux q(0, p), is speci f ied .  

We use the ope ra to r s  cor responding  to the units (Fig. 2b) which es tab l i sh  the re la t ionship  between 
q(0, p) and 8(0, p); then we have 

~(o,/)l, =. = L-~ ~(0, p) bVh- I (o, t,)Ior = q- (o. i,) t, V F -  ' ' 

70(0, p ) =  70,(0, p ) l ,q=, , /~P -4-I �9 , 

(0, t) = L-~ (0, p) I ,~ . .  -2- P �9 

Since 

=-bV~-  V F '  
r 

we can wri te  the following equations,  making use  of the convolution theorem:  

t 

r O. t) I,~=- = ~ q(O. t - -  ~) 1 
o 

c2 

i 1 I a  e ~-t 0(o, 0 = - -  o(o,/--'Ol~,,=. 2 V ~  cq t V i -  
o 

dr. 

Calculat ing the quantity ~(0, t ) l c .  = -  for  t ime t, measu r ing  the t e m p e r a t u r e  ,9(0, t) a t  this t ime,  and 
solving ( analyt ica l ly  or graphical ly)  t~e sys t em of equations for a/C2q, we can de te rmine  i ts  value.  

This is the fundamental  bas i s  for de termining  the hea t -propaga t ion  veloci ty .  On this bas i s  it is pos -  
sible to develop seve ra l  p rocedures ,  using a va r ie ty  of laws governing the change [n the heat  f lux. Fo r  
example ,  f requency methods ,  based  on a per iodic  change of q(0, t) (in pa r t i cu la r ,  a sinusoidal variat ion) ,  
can be deve loped:  To obtain a va r i e ty  of types of information we can use the opera to r  cor responding to 
the unit re la t ing  8(0, p) and ~(x, p): 

X 

(x, p ) =  ~ (O, p) e ~ -  r / a c-~o p @ I" 

Since [5 ] 

t - - x - E - ) +  
cq 

C a e - ~  - t  

2a # - -  

we find, using the convolution theorem,  

t 

O(x, t ) =  r t - -~ )  e-~-v~6 T - - - -  x -}- x - -  e ~a \ 2 a  x~--  
c a 2a x 2 _ -~q 

Evaluat ing the integral  and substi tuting in the measu red  values of ~(x, t) and 8(0, t), we can de te rmine  a/c~t. 

III .  We now determine  the s t ruc ture  of heat  t r ans f e r  in a semi- inf in i te  rod the rmal ly  insulated on 
its la te ra l  sur face ,  with a t i m e - v a r y i n g  heat  flux at one of its ends.  

The heat  conduction tn the rod is descr ibed  by an integrodifferent ia l  equation incorpora t ing  m e m o r y .  
The analytic formulat ion of the prob lem is 
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m 

a (0) O0 (x, t) -'- I a '  (s) O~ (x, t - -  s) ds = k (0) O~e (x, t) 
Ot Ot Ox 2 

I k' (s) O"-e (x, t - -  s) ds, 
�9 Ox"- 
0 

O~ (x, o) ~(x, o)=o, 
Ot 

- -  k (0) O~ (x, t) - -  ) ~ k' (s) 
Ox x~O 

0 

= T ( x ,  t )~O,  O=const. 

Using the Borel  theorem and taking into account the homogeneous initial conditions, we find 

= (0) pYO. (x, p) --]--[p~ (p) - - a  (0)1 pO. (x, p) 

= k (o) o '~  (x, p) o"-~ (x, p) 
Ox ~ + [pk(p)--k(O)] Ox' ' ~ ( ~ '  p) = 0 ,  

- 0 ,  ~(oo, t ) = O ,  

O0 (X,oxt ~ s) ds ~=o = q (0, t), 

a#(x, p) ~ a6(x, p) I 
k (o) ~=o-- [Pk (P )  - -  k (0)] - [ q(O, p). OX OX x=o = 

The equation for  the t r an s fo rm  of the t empera tu re  is 

~ (x, p) ~ (P) ~ (x, p) = O. 
Ox ~ P -~ (p) 

Since 

Its solution satisfying the boundary conditions is 

_~).E 1/-~,p) 

(x, p) = q-(O, p) p Wp-k (p> V a (p)/-k (p): e 

(o, p) = ~(o, p) p ) ~  ~(p) )/~ (p)]~ (p) 

then 

(x, p) = ~ (0, p) e -xV~ ) =(P}/~(P) 

We find an equation for q(x, p): 

q(x, p ) = - - p k ( p )  O~(X,ox p) = q(O, p)e -~V~-I''~p)I~(p)" 

Using the express ions  for ~(x, p) and ~t(x, p) we can construct  the s t ruc tura l  d iagram of Fig.  2c. 

Comparat ive  analysis  of the s t ruc ture  of the heat t r ans fe r  for  the ord inary  F o u r i e r  equation, for  a 
hyperbol ic  equation, and for an equation incorporat ing m e m o r y  shows that the s t ruc tu re  of the heat  t r a n s -  
fe r  is s t rongly influenced by the nature  of the  kerne ls  a '  (s) and k'(s) of the integral  o p e ra to r s .  In pa r t i -  
cular ,  for k'(s) = 0 we find k(s) =const  =k(0) =XU(t), where U(t) is the unit step function, 

0, for t ~ O ,  
U(t) = 1, for I ~/0. 

We thus have 

~(p) = k ! .  
P 

If we assume a ' (s )  =0 and thus ~(s) =eonst=a(O) =peU(t), we find ~(p) =pc ( I /p ) .  

Substktutinga(p) =pe /p  and ~.(p) =k /p  into the corresponding ope ra to r  functions of the units of the s t ruc -  
tural  d iagram in Fig.  2c, we find that the s t ruc tu re  of heat t r ans fe r  for  such kerne ls  is analogou s to that 
in the case inwhich there  is no re laxat ion of the p roper t i e s  of the medium.  

Comparing the s t ruc tura l  d iagrams in Fig.  2b and Fig.  2c, we see that, when the t r ans fo rms  of the 
re laxat ion  functions a re  
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~ ( p )  = 2 s  ~ (p) = ~' 

P p p + l  

L-I  {~(p)} = L-~ { - ~  -]  = pcU (t) = a(t), 

C: 

= ) = k (t), 
p p + l  

the s t ruc tu ra l  d i ag ram o:[ heat  t r a n s f e r  with m e m o r y  ef fec ts  acqu i re s  the fo rm of the s t ruc tu ra l  d i ag ram 
for  heat  t r a n s f e r  descr ibed  by a hyperbol ic  heat-conduct ion equat ion.  

Compar i son  of the s t r u c t u r e s  in Fig .  2b and F ig .  2e thus leads to the conclusion that  the hyperbol ic  
heat-conduct ion equation d e s c r i b e s  heat  t r an s f e r  in media which have an ideal t he rma l  e las t ic i ty ,  i . e . ,  
for  which the t e m p e r a t u r e  is taken on instantaneously ~(t) =DcU(t)) and in which the heat  flux is d iss ipated 
over  t ime as the r e su l t  of an exponential  re laxa t ion  of the t he rma l  conductivity,  with a t ime constant  a / c  2 . 

1 .  

2. 

3= 

4. 
5. 
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